MapReduce介绍
本节将介绍Hadoop的分布式计算框架:MapReduce。 MapReduce来历MapReduce最早来源于谷歌公司的一篇学术论文,是由Google公司研究提出的一种面向大规模数据处理的并行计算模型和方法,当时主要是为了解决其搜索引擎中大规模网页数据的并行化处理。但由于MapReduce可以普遍应用于很多大规模数据的计算问题,因此自发明MapReduce以后,Google公司内部进一步将其广泛应用于很多大规模数据处理问题。到目前为止,Google公司内有上万个各种不同的算法问题和程序都使用MapReduce进行处理。MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念”Map(映射)”和”Reduce(归约)”,是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。MapReduce是面向大数据并行处理的计算模型、框架和平台,它隐含了以下三层含义: MapReduce是一个基于集群的高性能并行计算平台(Cluster Infrastructure)。它允许用市场上普通的商用服务器构成一个包含数十、数百至数千个节点的分布和并行计算集群。 MapReduce是一个并行计算与运行软件框架(Software Framework)。它提供了一个庞大但设计精良的并行计算软件框架,能自动完成计算任务的并行化处理,自动划分计算数据和计算任务,在集群节点上自动分配和执行任务以及收集计算结果,将数据分布存储、数据通信、容错处理等并行计算涉及到的很多系统底层的复杂细节交由系统负责处理,大大减少了软件开发人员的负担。 MapReduce是一个并行程序设计模型与方法(Programming Model & Methodology)。它借助于函数式程序设计语言Lisp的设计思想,提供了一种简便的并行程序设计方法,用Map和Reduce两个函数编程实现基本的并行计算任务,提供了抽象的操作和并行编程接口,以简单方便地完成大规模数据的编程和计算处理 。Hadoop MapReduce是一个用于轻松编写应用程序的软件框架,该应用程序以可靠,容错的方式在大型集群(数千个节点)上并行处理大量数据(多TB数据集)。MapReduce 作业通常将输入数据集分成独立的块,这些块由地图任务以完全并行的方式处理。该框架对映射的输出进行排序,然后将其输入到reduce任务。通常,作业的输入和输出都存储在文件系统中。该框架负责调度任务,监视它们并重新执行失败的任务。通常,计算节点和存储节点是相同的,即MapReduce框架和Hadoop分布式文件系统(请参阅HDFS架构指南)在同一组节点上运行。此配置允许框架有效地调度数据已存在的节点上的任务,导致集群中的非常高的聚合带宽。MapReduce框架由一个单一主的ResourceManager的,一个从节点管理器每个集群节点,MRAppMaster每个应用程序(见YARN架构指南)。最小的应用程序通过适当的接口和/或抽象类的实现来指定输入/输出位置和供应图并减少功能。这些和其他作业参数包括作业配置。然后,Hadoop 作业客户端将作业(jar /可执行文件等)和配置提交到ResourceManager,然后ResourceManager承担将软件/配置分发到从站,调度任务和监视它们,向作业提供状态和诊断信息,客户。MapReduce运行机制从逻辑实体的角度讲解mapreduce运行机制,这些按照时间顺序包括:输入分片(input split)、map阶段、combiner阶段、shuffle阶段和reduce阶段。
输入分片(input split):在进行map计算之前,mapreduce会根据输入文件计算输入分片(input split),每个输入分片(input split)针对一个map任务,输入分片(input split)存储的并非数据本身,而是一个分片长度和一个记录数据的位置的数组,输入分片(input split)往往和hdfs的block(块)关系很密切,假如我们设定hdfs的块的大小是64mb,如果我们输入有三个文件,大小分别是3mb、65mb和127mb,那么mapreduce会把3mb文件分为一个输入分片(input split),65mb则是两个输入分片(input split)而127mb也是两个输入分片(input split),换句话说我们如果在map计算前做输入分片调整,例如合并小文件,那么就会有5个map任务将执行,而且每个map执行的数据大小不均,这个也是mapreduce优化计算的一个关键点。
map阶段:就是程序员编写好的map函数了,因此map函数效率相对好控制,而且一般map操作都是本地化操作也就是在数据存储节点上进行;combiner阶段:combiner阶段是程序员可以选择的,combiner其实也是一种reduce操作,因此我们看见WordCount类里是用reduce进行加载的。Combiner是一个本地化的reduce操作,它是map运算的后续操作,主要是在map计算出中间文件前做一个简单的合并重复key值的操作,例如我们对文件里的单词频率做统计,map计算时候如果碰到一个hadoop的单词就会记录为1,但是这篇文章里hadoop可能会出现n多次,那么map输出文件冗余就会很多,因此在reduce计算前对相同的key做一个合并操作,那么文件会变小,这样就提高了宽带的传输效率,毕竟hadoop计算力宽带资源往往是计算的瓶颈也是最为宝贵的资源,但是combiner操作是有风险的,使用它的原则是combiner的输入不会影响到reduce计算的最终输入,例如:如果计算只是求总数,最大值,最小值可以使用combiner,但是做平均值计算使用combiner的话,最终的reduce计算结果就会出错。shuffle阶段:将map的输出作为reduce的输入的过程就是shuffle了,这个是mapreduce优化的重点地方。这里我不讲怎么优化shuffle阶段,讲讲shuffle阶段的原理,因为大部分的书籍里都没讲清楚shuffle阶段。Shuffle一开始就是map阶段做输出操作,一般mapreduce计算的都是海量数据,map输出时候不可能把所有文件都放到内存操作,因此map写入磁盘的过程十分的复杂,更何况map输出时候要对结果进行排序,内存开销是很大的,map在做输出时候会在内存里开启一个环形内存缓冲区,这个缓冲区专门用来输出的,默认大小是100mb,并且在配置文件里为这个缓冲区设定了一个阀值,默认是0.80(这个大小和阀值都是可以在配置文件里进行配置的),同时map还会为输出操作启动一个守护线程,如果缓冲区的内存达到了阀值的80%时候,这个守护线程就会把内容写到磁盘上,这个过程叫spill,另外的20%内存可以继续写入要写进磁盘的数据,写入磁盘和写入内存操作是互不干扰的,如果缓存区被撑满了,那么map就会阻塞写入内存的操作,让写入磁盘操作完成后再继续执行写入内存操作,前面我讲到写入磁盘前会有个排序操作,这个是在写入磁盘操作时候进行,不是在写入内存时候进行的,如果我们定义了combiner函数,那么排序前还会执行combiner操作。每次spill操作也就是写入磁盘操作时候就会写一个溢出文件,也就是说在做map输出有几次spill就会产生多少个溢出文件,等map输出全部做完后,map会合并这些输出文件。这个过程里还会有一个Partitioner操作,对于这个操作很多人都很迷糊,其实Partitioner操作和map阶段的输入分片(Input split)很像,一个Partitioner对应一个reduce作业,如果我们mapreduce操作只有一个reduce操作,那么Partitioner就只有一个,如果我们有多个reduce操作,那么Partitioner对应的就会有多个,Partitioner因此就是reduce的输入分片,这个程序员可以编程控制,主要是根据实际key和value的值,根据实际业务类型或者为了更好的reduce负载均衡要求进行,这是提高reduce效率的一个关键所在。到了reduce阶段就是合并map输出文件了,Partitioner会找到对应的map输出文件,然后进行复制操作,复制操作时reduce会开启几个复制线程,这些线程默认个数是5个,程序员也可以在配置文件更改复制线程的个数,这个复制过程和map写入磁盘过程类似,也有阀值和内存大小,阀值一样可以在配置文件里配置,而内存大小是直接使用reduce的tasktracker的内存大小,复制时候reduce还会进行排序操作和合并文件操作,这些操作完了就会进行reduce计算了。reduce阶段:和map函数一样也是程序员编写的,最终结果是存储在hdfs上的。